Grocery Delivery Services: A Mixed Bag

This is a cross-posted blog from the Berman Institute of Bioethics’s Global Food Policy and Ethics (GFEPP) blog. It was written by Leslie Engel, MPH, a Science Writer Consultant for the GFEPP.

Americans have more ways than ever to shop for the ingredients needed for their meals. This was not always the case. Prior to the first self-service grocery store opening over a century ago, shoppers had to rely on clerks to retrieve and package items for them. Since then—aside from the invention of scanners and self-checkout—the grocery shopping experience has remained largely unchanged. It’s an industry ripe for disruption, and tech companies have seized upon this.

Rowan Freeman, Unsplash License

Enter grocery delivery services. These companies make lofty promises—to eliminate the hassle of grocery shopping, meal planning, preparation, and even the act of cooking itself—while also being good for you and the environment. And more Americans than ever are now using them.

I worked as a recipe manager for a leading grocery delivery startup whose mission is to make healthy eating easy by using artificial intelligence (AI) technology to predict customer food preferences. As a professionally trained chef with a background in public health, I was fascinated with the ability of such services to seamlessly deliver top-quality, nourishing, and sustainable products and recipes to customers, potentially as another avenue to improve health and wellbeing through home cooking. However, as I developed yet another recipe involving ground beef, I began to question how healthy this industry really is, both for ourselves and for our food system.

Convenience, for a price
Convenience, safety, and accessibility are the main appeal of these delivery services. This was especially evident during the COVID-19 pandemic, when many consumers turned to delivery to avoid in-person shopping. In theory, this means that more people will have better access to food, especially those with health, mobility, or other constraints. However, convenience comes at a price, and grocery delivery services pass this cost onto consumers in the form of markups, service, and delivery fees. Additionally, increased food costs due to inflation likely render this convenience financially out of reach for those most in need.

Reduction in greenhouse gas emissions?
There’s some evidence that grocery delivery could be more environmentally friendly than hopping into the car because it reduces greenhouse gas emissions. A study in Washington State demonstrated that it may be more efficient for a fully stocked truck to deliver to multiple households in the same neighborhood rather than individuals driving to the store themselves. But this is a best case scenario. The biggest emissions reductions would require households to cluster their orders together and forgo specific delivery times, thus reducing the convenience factor and the main selling point of such services.

Tim Mossholder, Unsplash License

Reliance on California’s Central Valley
Twenty-five percent of our nation’s food is produced in the Central Valley of California. The area is so integral to business that the company I worked for hired someone specifically from the region to oversee produce sourcing. But its agricultural future is in peril: water is scarcer than ever, severe droughts related to climate change have diminished groundwater stores and decimated crops, and intensive farming practices exacerbate the problem.

Crop failures or shortages were a huge sourcing and supply chain headache with trickle down effects. Customers often complained about receiving an inferior product, or one not as uniform as what they were accustomed to. Receiving a last minute vegetable “swap” presented a whole new set of customer challenges: I don’t like the cauliflower that replaced my broccoli! And how am I supposed to cook this?

The end result was often wasted food, as evidenced in the customer comments I analyzed. Food wasted at the household level is especially egregious because it squanders all the resources that went into growing, processing, packaging, and shipping it. In the U.S., between 73 and 152 metric tons of food is wasted somewhere along the supply chain annually. About half of that waste is happening at the household or food service level. And worldwide, food waste contributes 8% of human-generated greenhouse gas emissions, making it a significant contributor to climate change.

Technology
When customers rated a product or recipe, it became a data point used to further refine the AI, which then “decides” what product or recipe will go into their next delivery. You’ve no doubt seen the effectiveness of this technology in eerily relevant pop-up ads. Similar to how AI learns which ads you are most likely to click on, it can also learn which foods you’re going to enjoy or not. Like that hamburger? You shall receive more ground beef! It becomes a feedback loop designed to retain customers and increase profits, but not necessarily improve your health or the environment.

Looking Ahead
I still believe that grocery delivery services and the technology that drives them are the way of the future and can be a positive force within the food system. AI can potentially be used to improve diets, not just increase profits; researchers have harnessed this technology to help people grappling with obesity and diabetes to eat better.

To improve access for everyone, the U.S. government should make it easier for grocery delivery companies to accept Supplemental Nutrition Assistance Program (SNAP).The USDA is currently piloting a program that enables SNAP recipients to purchase groceries online from select retailers. Incentives should also exist for companies to waive delivery and service fees for SNAP recipients.

In addition, produce should be sourced regionally when possible. Shorter transit distances from farm to fridge mean less greenhouse gas emissions and fresher, more nutritious produce with a longer shelf life that’s less likely to be tossed. Fresh Direct offers a selection of local produce and more services should follow suit. The increased demand could help boost struggling regional agriculture and decrease demand on the imperiled Central Valley. Finally, the biggest thing missing from this new grocery shopping experience are people. AI may be “filling” your cart, but humans still harvest, process, pack and deliver everything we eat for low wages in unsafe working conditions. The pandemic has revealed that the meatpacking industry will go to great lengths–at the expense of humans–to maintain production and profits. Most recently, dozens of children were found to be illegally working as sanitation workers in meatpacking plants. By further alienating ourselves from where our food comes from, we’re less likely to see the value in the people behind the scenes making sure your fridge is full.

Leslie Engel, MPH, is a Science Writer Consultant for the Global Food Ethics and Policy Program.

Understanding human water turnover in times of water scarcity

This writing was originally published in Cell Metabolism in their February issue.

Water covers 70% of the planet; however, only 3% is freshwater, which the global population depends on to drink, irrigate crops, and for our sanitation and hygiene. Water is central to almost all human activity and endeavors and, most importantly, the homeostasis of our bodily functions and health. We know that access to both adequate quantity and quality of water drives optimal health. Still, when in shortage or contaminated, it can cause deleterious effects on various health outcomes, some more known than others (1).

While there is substantial research understanding the health effects of insufficient water intake, there are measurement uncertainties in how much water people consume, retain, and excrete as well as a paucity of evidence on the influence of physical, metabolic, and environmental factors on water homeostasis in the human body. A recent study by Yamada et al. published in Science provides further insight into the determinants of water turnover (WT) or the water processed and used by the body (2). The largest study of its kind, they sampled 5,604 people living across 23 countries across diverse regions of the world ranging from 8 days to 96 years old. They examined whether age, body composition, physical activity, socioeconomic status, and geographical attributes of various regions impacted WT. They did this by having subjects consume 100 ml of water, of which 5% was deuterated. This isotope tracking allowed the investigators to measure WT in a highly accurate and precise way.

Predictably, WT was highest in neonates and decreased with age, positively correlated with free mass, total energy expenditure, and physical activity, and negatively correlated with percent body fat. Interestingly, where people live, and their livelihoods matter for WT as well. WT was higher in those living in hotter and more humid places and higher altitude areas. People with traditional livelihoods, such as hunter-gatherers and subsistence farmers, had higher WT than those working outside agriculture. Furthermore, people living in countries characterized as having a low human development index (HDI)—a comprehensive composite index that measures the different dimensions of human development, including standards of living, life expectancy, and education—had higher WT than those living in countries with middle- and high HDI, even after adjusting for physiological and environmental factors.

While some of these results may not be surprising regarding age and biology, they present clear warning signs of vulnerability when considering looming global scenarios, trends, and shocks to water security, with poor populations disproportionately suffering the most severe consequences (3). The world is already grappling with water scarcity—the availability of water depends on an intimate dance between a region's water demand and water supply. As it stands, 4 billion people live with severe water scarcity at least one month a year, with nearly half of those people living in China and India. Half a billion live with severe water scarcity all year round (4). Distressing still, 784 million people worldwide lack access to safe drinking water (5). The figure below shows how these numbers break down by the four major country income groups, and climate change will likely worsen this situation.

Figure 1: Number of people (millions) without access to safe drinking water, 2020

Legend: Each bar represents the surface (drinking water directly from a river, dam, lake, pond, stream, canal, or irrigation canal), limited (drinking water from an improved source for which collection time exceeds 30 minutes for a roundtrip including queuing) and unimproved (drinking water from an unprotected dug well or unprotected spring) sources of drinking water by country income classification. Source: World Health Organization and UNICEF Joint Monitoring Programme, 2021

Climate change will have significant impacts on how much water is available as well as its quality. Already, water systems that provide freshwater to human populations are drying up and polluted from overuse and runoff, much of this coming from agriculture and other anthropogenic forces (6). Water ecosystems around the world will also continue to be strained and stressed. For example, since 1900, approximately 68% of wetlands have been lost, which are essential ecosystems that purify drinking water systems, among many other functions (7). In addition, extreme weather events related to climate change, such as changes to precipitation and severe drought, as well as the melting of glacier ice, is and will continue to impact water resources. There will also be a decline in the quality of water sources due to anthropogenic and natural factors, along with an increased demand for water due to higher temperatures and evaporation rates. As a result, water insecurity under "business as usual" climate scenarios will worsen (8).

Human demand for water worldwide has increased six-fold over the past century and continues to rise at around 1% per year due to the growing population and global economy (9). At the current consumption rate, by 2025, two-thirds of the world's population may face water shortages (10). What will be the consequences for those vulnerable populations living in countries of low HDI given their increased demand for water? Even a slight imbalance in the delicate homeostasis of WT could put these populations at disproportionate risk for various health disparities, along with constraints on access to improved water safety and quality.

We are just beginning to understand the importance of how water is cycled through the body and how to measure it. Yamada and colleagues shed further light on the factors influencing how water is used and excreted in the body. One gap they highlight is the inability to measure the influence of water coming from food on WT. For those who work in food security, it will be necessary to understand how the quality and diversity of diets contribute to and potentially further protect water homeostasis in distinct biological, sociodemographic, and geographical contexts. Understanding this relationship could spur joint policy action among communities concerned with food and water security. With climate disruption continuing to threaten the quantity and quality of food and water sources, scientific and geopolitical collaboration has never been more urgent.  

References

1.     Popkin, B.M., D’Anci, K.E., and Rosenberg, I.H. (2010). Water, hydration, and health. Nutr. Rev. 68, 439–458.

2.     Yamada, Y., Zhang, X., Henderson, M.E.T., Sagayama, H., Pontzer, H., Watanabe, D., Yoshida, T., Kimura, M., Ainslie, P.N., Andersen, L.F., et al. (2022). Variation in human water turnover associated with environmental and lifestyle factors. Science 378, 909–915.

3.     Dell’Angelo, J., Rulli, M.C., and D’Odorico, P. (2018). The global water grabbing syndrome. Ecol. Econ. 143, 276–285.

4.     Mekonnen, M.M., and Hoekstra, A.Y. (2016). Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323.

5.     World Health Organization and UNICEF (2021). World Health Organization and UNICEF Joint Monitoring Programme. https://washdata.org/data/household#!/dashboard/new.

6.     van Vliet, M.T.H., Flörke, M., and Wada, Y. (2017). Quality matters for water scarcity. Nat. Geosci. 10, 800–802.

7.     Davidson, N.C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65, 934.

8.     IPCC (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press).

9.     Water, U.A.U.N. (2020). United Nations World Water Development Report 2020: water and climate change (United Nations Educational, Scientific and Cultural Organization).

10.   World Wildlife Fund. (2023). Water Scarcity https://www.worldwildlife.org/threats/water-scarcity#:~:text=Billions%20of%20People%20Lack%20Water&text=By%202025%2C%20two%2Dthirds%20of%20the%20world's%20population%20may%20be,and%20economic%20decline%20may%20occur.